Motivation

- Modern software systems increasingly complex and dynamic
 - Loosely-coupled highly-distributed and dynamic architectures
 - Multi-layered execution environments & virtualized infrastructures
 - Shift towards cloud computing (SaaS, PaaS, IaaS) platforms
 - Independent applications hosted on shared physical infrastructures

- Challenges
 - Lack of direct control over the underlying physical hardware
 - Dynamic resource allocations
 - New threats arising from the use of shared physical infrastructures

- Major showstoppers
 - General lack of trust in virtualized infrastructures & cloud computing
 - Inability to provide end-to-end quality-of-service guarantees
 - Overprovisioning leading to high TCO (Total-Cost-of-Ownership)

Research Roadmap

- Long-term vision: Self-aware software systems that are
 - aware of their quality-of-service and resource efficiency and of the way they are influenced by the environment they are running in,
 - able to predict the effect of changes in the environment, e.g., changing workloads or resource allocations,
 - automatically adapting to such changes to enforce quality-of-service requirements and improve efficiency thus lowering TCO.

- Approach
 - Systems designed with integrated dynamic models
 - Models maintained and calibrated automatically during operation
 - Models used at run-time for quality-of-service management

- Benefits
 - Guaranteed end-to-end quality-of-service
 - Higher resource efficiency
 - Lower TCO (Total-Cost-of-Ownership)

"I think, therefore I am..."
-- René Descartes

http://descartes.ipd.kit.edu